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ELECTRON TRANSFER REACTIONS OF AN NADH MODEL WITH IRON(III)

COMPLEXES. A TWO-STEP ELECTRON TRANSFER MECHANISM

*
Shunichi FUKUZUMI, Yuji KONDO, and Toshio TANAKA
Department of Applied Chemistry, Faculty of Engineering,

Osaka University, Suita, Osaka 565

A model of NADH, l-benzyl-1,4-dihydronicotinamide (Bz1NH), readily
reduces [Fe(N--N)3]3+ (N-N = 2,2'-bipyridine and 1,l10-phenanthroline)
to [Fe(N—N)3]2+. The stoichiometry of the electron transfer reaction
in the absence of a suitable base is such that Bz1lNH appears to be
one-electron donor. In the presence of pyridine or p-cyanopyridine,
however, BzlNH acts as an gpparent two-electron donor, wher the reduc-

tion of [Fe(N-N)3]3+ with Bz1lNH proceeds by a two-step process.

An important function of dihydropyridine coenzymes, particularly NADH, is its

1)

involvement in the electron-transport systems for biological redox reactions.

Although there have been extensive studies on the mechanisms of hydride transfer

2)

(two-electron equivalent) in the redox reactions of NADH models, only a few

works have been reported on the mechanisms for electron transfer reactions of

3)

NADH models with one-electron oxidants. We wish to report here a two-step

electron transfer mechanism for reactions of an NADH model, l-benzyl-1,4-dihydro-
nicotinamide (Bz1NH), with [Fe(N-N)3]3+ (N-N = 2,2'-bipyridine and 1,10-phenan-
throline) in MeCN in the presence of a suitable base.

Upon mixing Bz1lNH with [Fe (bpy) ,] (PF or [Fe(phen),](Cl0,), (bpy = 2,2'-bi-
3 3 4’3

63
pyridine, phen = 1,10-phenanthroline) in MeCN at 298 K, an intense absorption band
due to the reduced iron(II) species was observed at 520 nm for [Fe(bpy)3]2+ and
507 nm for [Fe(phen)3]2+ without delay. The stoichiometry of the oxidation of

Bz1NH by [Fe(N-N)3]3+ was studied in a small excess of the latter. At the end of

+

the reaction, the amount of [Fe(N-N)3]2 formed was determined from the absorption

4)

spectrum and compared with the known amount of BzlNH initially added, as shown

in Fig. 1. In the absence of a base, the result corresponds to a stoichiometry of
approximately one equivalent [Fe(N-N)3]3+ reduced by one mole of Bz1NH since the

5)

slope in Fig. la is 1.14 + 0.05. In the presence of excess amounts of pyridine

or p-cyanopyridine, however, the number of equivalents of [Fe(N—N)3]3+ reduced per
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one mole of BzINH increases, reaching two, as
shown in Fig. 1lb (the slope is 2.03 * 0.08).
Such a change of the stoichiometry has been
observed also for the electrochemical oxida-
tion of BzINH in the absence and the presence

6)

of pyridine. The stoichiometry in the

presence of a base is thus given by Eq. 1,

BzINH + 2[Fe(N-N)3]3+ + B

+

— = BzINT + 2[Fe(N-N)3]2+ + BH (1)

where B stands for a base (pyridine or p-
cyanopyridine). A product of this reaction,
leN+, was identified by comparing the lH
NMR spectrum of the resultant solution with
that of the authentic sample.7)

Two opposing mechanisms (Schemes 1 and
2) are considered for the oxidation of Bz1NH
by [Fe(N-N)3]3+; one is the one-electron

mechanism (Scheme 1). A transfer of one-

electron from Bz1NH to [Fe(N-N)3]3+ produces
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Fig. 1. Stoichiometry of the
reactions of Bz1lNH with excess

amounts of [Fe(bpy)3]3+ (®) and

+

[Fe(phen)3]3 (O ) (a) in the

absence of a base and (b) in the
presence of pyridine (4.14 x 1072
mol dm~3) or p-cyanopyridine

1 3)_

(3.3 x 107" mol dm

a protonated pyridinyl radical cation leNHT which cannot be oxidized further by

[Fe(N—N)3]3+ (Egq. 2). The free radical cation BzINHY is known to undergo dispro-

portionation (Eq. 3),6) and the resulting protonated species H(leNH)+ is deproto-

nated by a suitable base to regenerate Bz1NH (Eq. 4).8) On the other hand, the
Scheme 1 (one-electron mechanism).
BzINH + [Fe(N-N)3]3+-————> BzlNHY + [Fe(N-N)3]2+ (2)
2BzINHY ——> BzIN' + H(BzlnH)®' (3)
In the presence of a base
H(BzlNH)T + B — - BzilNg + BH'T (4)

two-electron mechanism (Scheme 2) involves a direct two-electron oxidation of

Bz1NH to give the pyridinium cation leN+ (Eq. 5), and the proton formed is trapped

by Bz1NH in the absence of a base (Egq. 6) or by a base in its presence (Eg. 7).

Scheme 2 (two-electron mechanism).
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Fig. 2. (a) A kinetic curve for the two-step oxidation of BzINH (2.00

-4 4

x 10 mol dm—3) by [Fe(bpy)3]3+ (7.45 x 10 ° mol dm-3) in the presence

3 mo1l am™3

of p-cyanopyridine (6.30 x 10~ ), followed by the rise of
absorbance at 520 nm due to [Fe(bpy)3]2+. (b) The pseudo-first-order
rate constants for the second step (kobsd) in the oxidation of BzlNH by
[Fe(bpy)3]3+ (O ) and [Fe(phen)3]3+ ( ® ) plotted against the concentra-

tions of pyridine [Py] and p-cyanopyridine [CNPy].

BzINH + 2[Fe(N—N)3]3+-———> BzINT + 2[Fe(N-N)3]2+ + HT (5)
it + BzINH — H(BzlNH)" (6)

In the presence of a base
it + B —— B’ (7)

The stoichiometry of the reaction cannot distinguish between these two mecha-
nisms since both mechanisms give the same over-all reaction irrespective of the
absence or the presence of a base. However, the kinetic curve for the formation of
[Fe(bpy)3]2+ (Fig. 2a), measured by a Union RA-103 stopped flow spectrophotometer,
clearly shows the occurrence of a two-step oxidation of Bz1NH by [Fe(bpy)3]3+ in
the presence of p-cyanopyridine. A similar kinetic behavior of the two-step oxida-
tion was observed also in the presence of pyridine. Such observations of the two-
step oxidation exclude the possibility of a direct two-electron oxidation (Scheme 2)
and thus suggests the occurrence of two successive one-electron transfer processes
(Scheme 1).

The rate constants of the first step (kl) for the oxidation of Bz1lNH by both
[Fe(bpy)3]3+ and [Fe(phen)3]3+ were too fast to be determined accurately with the

stopped flow spectrophotometer; k, > 1 x 107 mol™tam3s™!. such fast one-electron
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transfer reactions are reconciled with negative values of the free energy change

0 1 1

for the electron transfer reactions; AG~ = -29 kJ mol ~ and =30 kJ mol ~ for

[Fe(bpy)3]3+ and [Fe(phen)3]3+, respectively, obtained from the relation

0 _ o _ .0 0 0 . . .
AGT = F(EOx Ered) where on and Ered are the oxidation potential of Bz1lNH (0.76
V vs. SCE)g) and the reduction potentials of [Fe(bpy)3]3+ (1.06 V) or [Fe(phen)3l3+

(1.07 V).lo) The rate of the second step followed the pseudo-first-order kinetics
in the presence of excess amounts of a base, and the pseudo-first-order rate

constants (k d) showed linear dependences on the concentrations of the bases as

obs
shown in Fig. 2b. Thus, the rate-limiting process of the second step is suggested

to be the reaction of H(leNH)+ with a base (Eg. 4) to regenerate BzlNH which

rapidly reduces [Fe(N-N)3]3+ again.ll) Indeed, the weaker base p-cyanopyridine
gave the smaller rate constant for the second step (k2 = (6.9 + 1.1) x 103 mol-1
am3s™!) than the stronger base pyridine (k, = (1.0 + 0.3) x 10% mo17tam3s™h).
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